Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using "pathogen-like" amphiphilic polyanhydride nanoparticles.
نویسندگان
چکیده
C-type lectin receptors (CLRs) offer unique advantages for tailoring immune responses. Engagement of CLRs regulates antigen presenting cell (APC) activation and promotes delivery of antigens to specific intracellular compartments inside APCs for efficient processing and presentation. In these studies, we have designed an approach for targeted antigen delivery by decorating the surface of polyanhydride nanoparticles with specific carbohydrates to provide pathogen-like properties. Two conserved carbohydrate structures often found on the surface of respiratory pathogens, galactose and di-mannose, were used to functionalize the surface of polyanhydride nanoparticles and target CLRs on alveolar macrophages (AMϕ), a principle respiratory tract APC. Co-culture of functionalized nanoparticles with AMϕ significantly increased cell surface expression of MHC I and II, CD86, CD40 and the CLR CIRE over non-functionalized nanoparticles. Di-mannose and galactose functionalization also enhanced the expression of the macrophage mannose receptor (MMR) and the macrophage galactose lectin, respectively. This enhanced AMϕ activation phenotype was found to be dependent upon nanoparticle internalization. Functionalization also promoted increased AMϕ production of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α. Additional studies demonstrated the requirement of the MMR for the enhanced cellular uptake and activation provided by the di-mannose functionalized nanoparticles. Together, these data indicate that targeted engagement of MMR and other CLRs is a viable strategy for enhancing the intrinsic adjuvant properties of nanovaccine adjuvants and promoting robust pulmonary immunity.
منابع مشابه
Harvesting murine alveolar macrophages and evaluating cellular activation induced by polyanhydride nanoparticles.
Biodegradable nanoparticles have emerged as a versatile platform for the design and implementation of new intranasal vaccines against respiratory infectious diseases. Specifically, polyanhydride nanoparticles composed of the aliphatic sebacic acid (SA), the aromatic 1,6-bis(p-carboxyphenoxy)hexane (CPH), or the amphiphilic 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) display unique bulk an...
متن کاملHigh-throughput synthesis of carbohydrates and functionalization of polyanhydride nanoparticles.
Transdisciplinary approaches involving areas such as material design, nanotechnology, chemistry, and immunology have to be utilized to rationally design efficacious vaccines carriers. Nanoparticle-based platforms can prolong the persistence of vaccine antigens, which could improve vaccine immunogenicity. Several biodegradable polymers have been studied as vaccine delivery vehicles(1); in partic...
متن کاملAntigen Delivery to Macrophages Using Liposomal Nanoparticles Targeting Sialoadhesin/CD169
Sialoadhesin (Sn, Siglec-1, CD169) is a member of the sialic acid binding Ig-like lectin (siglec) family expressed on macrophages. Its macrophage specific expression makes it an attractive target for delivering antigens to tissue macrophages via Sn-mediated endocytosis. Here we describe a novel approach for delivering antigens to macrophages using liposomal nanoparticles displaying high affinit...
متن کاملPLGA-based macrophage-mediated drug targeting for the treatment of visceral leishmaniasis
The potential of PLGA-nanoparticles as a carrier of amphotericin B and doxorubicin against visceral leishmaniasis was evaluated by macrophage-mediated drug targeting approach. PLGA-nanoparticles were modified by coating them with macrophage-specific ligand-lectin. Prior to in-vitro studies, characterization studies were carried out systematically include particle size, surface morphology, perce...
متن کاملRational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants
An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 33 18 شماره
صفحات -
تاریخ انتشار 2012